Timing and Phase Jitter Creating Energy, Transverse, and Intensity Jitter at LCLS

F.-J. Decker

1-Nov-2018

- LCLS-II and LCLS comparison
- FEL jitter brightness
- Factors of 2
- Finding and quantifying sources
- FEH, NEH Time Slot (TS = 60 Hz difference at 120 Hz)
- BC2 delay
- Injector laser timing
- Transverse jitter: HUGE and small

Electron Beam RMS Stability Goals for SCRF at LCLS-II

•	from Req	uire	ments	relative to σ	LCLS (achieved)
•	Electron energy: $\Delta E/E$	<	0.01%	40 %	40 %
•	Peak current: $\Delta I/I$	<	5 %	5 %	3-8 %
•	Bunch arrival time: Δt	<	20 fs	40 %	200 % (1000%)
•	Transverse: $\Delta x / \sigma$	- x <	10 %	10 %	3-12 %

• Longitudinal jitter is typically worse than transverse (due to the enormous compression to shorter bunches for FELs)

•	1.2 mm	\rightarrow	120 µm	\rightarrow	12 µm	(FWHM)
	4 ps	\rightarrow	400 fs	\rightarrow	40 fs	(FWHM)

 $\begin{array}{rrrr} 20 \% & \rightarrow & +2 \% \\ 40 \% & \rightarrow & +8 \% \\ 80 \% & \rightarrow & +28 \% \\ 100 \% & \rightarrow & +41 \% \\ rms/\sigma & \sqrt{\sigma^2 + rms^2}/\sigma \end{array}$

si ac

FEL Jitter Brightness improved due to Energy Stability

FEL Jitter Factor = Frac. average FEL brightness through a monochromator due to jitter

$$F = \frac{1}{\sqrt{1 + 4\left(\sigma_{JITTER}^2 / \sigma_{SASE}^2\right)}}$$

2x lower energy jitter, 40% more on-energy photons for monochromatic/self-seeded experiments

SLAC

Some Factors of "2" Problems with Jitter

- Electron vs photon energy, factor: 2.0 due to $\lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right)$
- σ (rms) vs FWHM, factor: 2.35
- Reduction of 20% in power is 10% in amplitude
- Power spectrum integral = rms²
 - $\sigma_E / E = 69 \ \mu m / 125 \ mm = 0.055\%$
 - by identifying and fixing the lines in frequency we can get 55 μ m / 125 mm = 0.044% or 20 % better in σ_E / E (80% of amplitude) or 36% better in power (0.8² = 0.64 in power)

High Power RF for Reference vs PCAV (Phase Cavity)

•	RF: 0.030 degS = 30 fs	LLRF RMS/Mean Ampl. LASER 0.044 % 0	RMS Phase .035 Deg S
•	PCAV timing	GUN 0.011 % 0	.046 Deg_S
•	one time-slot only [fs]	LOB 0.011 % 0	.020 Deg_5 .044 Deg_S
	1 2 3 4 <u>NEH</u>	L1S 0.034 % 0	.026 Deg_S
		L1X 0.043 % 0	.149 Deg X
	1 (55 53) 12 PCAV	LCLS	0-
	2 12 72 FEH	Cavity Difference Signals	
	3 72	1 2 3 4 1 0.000 ps 0.173 ps 0.175 ps 0.028	ps
•	Time slot differences NEH FEH	2 0.173 ps 0.000 ps 0.025 ps 0.175 3 0.175 ps 0.025 ps 0.000 ps 0.179	ps ps
	It was (before Jul 2017) 350 500 fs	4 0.028 ps 0.175 ps 0.179 ps 0.000	ps
	Improved (DC PS of FANOut): 310 9 fs	Bunch Arrival Time	
	Aug 2018 1000 270 fs		
	O	07/28/2017 09/1	(9.31

SLAC

Injector Laser Timing

- Vitara 2 shows 20.35 Hz line (since Oct 1st 2013)
- "Power track dither" is at that frequency
- History: 2015: Sep (5%), Dec 10th (10%), Dec 12th after laser work (50% of BC1 jitter), ... Integrated Noise at BPMS:LI21:233
 2016: Mar 3rd "CEP" settings changed on Vitara 2 (2%) Carrier Envelope Phase stabilization 0.01
- 2018: Jan-Mar (60%) same as Oct 1st 2013, without it laser jitter reduces from 95 to 55 fs

SLAC

Two Bunch: Second Bunch Gets Kicked by "warmed" KMONO

- Bunch 2 at 23.8 ns allover the place
- 1 minute of shots:
- "detuned" a little peak current
- Oct 2016 we found attenuation of 10 fixes it (210 ns)

Profile Monitor HFX:DG3:CVV:01 03–Jul–2016 15:21:50

SLAC

Transverse Jitter Improvements over the Years

- Injector laser spot is wandering (slowly), reduced by fast Gun Launch feedback for electrons
- Structural vibrations
 - 42 Hz was RF waveguide (water-cooled) to gun
 - 10.6 Hz from 12 m girder (21-1) with quads
 - Quad to wall (x)
 - Quad clamps (y)

150 mm off center 100* worse in y

LCLS Jitter Summary Display

William Colocho

Transverse from Energy + Dispersion

- Transverse jitter creates FEL intensity variations
- <u>Quadratic</u> fit gives a reduced "fit_rms", which can be used like corr-coef for a linear system, since: fit_rms(linear)^2 = (1-corrcoef^2) * fit_rms(average)^2
- Also: p1xm = 1/p1ym * corrcoef^2 [here 5:1 goes into 4:1]
- So different quadratic sources can be identified and quantified

Gas Detector Intensity Jitter Quantification

38 % of the jitter power is from \mathbf{x} movement in undulator

- 23 % is from y movement
- 5 % is from TMIT jitter

So we understand 66 % of the jitter.

Summary

- LCLS-II to LCLS comparison
- Timing can be as good as 50 fs rms compared to 30 fs RF
- Many factors of 2 to watch out
- We need time slot feedback in the timing system, like RF
 - NEH: 300 to now 1000 fs time slot ("fixed" with BC2 offset)
- Timing of Laser especially Vitara 2 bad with 20.35 Hz line
- Transverse jitter, fixes, and coming from energy jitter and dispersion, creating intensity jitter

SLA